167.两数之和II-输入有序数组

Q

给定一个已按照升序排列 的有序数组,找到两个数使得它们相加之和等于目标数。

函数应该返回这两个下标值 index1 和 index2,其中 index1 必须小于 index2。

说明:

返回的下标值(index1 和 index2)不是从零开始的。
你可以假设每个输入只对应唯一的答案,而且你不可以重复使用相同的元素。

示例:

输入: numbers = [2, 7, 11, 15], target = 9
输出: [1,2]
解释: 2 与 7 之和等于目标数 9 。因此 index1 = 1, index2 = 2 。

A

暴力

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
class Solution {
public int[] twoSum(int[] numbers, int target) {
int[] rs = new int[2];
int length = numbers.length;
for(int i = 0;i<length;i++){
for(int j = i+1;j<length;j++){
if(numbers[i]+numbers[j]==target){
rs[0] = ++i;
rs[1] = ++j;
return rs;
}
}
}
return rs;
}
}


  • 时间复杂度
    O(n*n)

  • 空间复杂度
    O(1)

二分查找

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

class Solution {
public int[] twoSum(int[] numbers, int target) {
for (int i = 0; i < numbers.length; ++i) {
int low = i + 1, high = numbers.length - 1;
while (low <= high) {
int mid = (high - low) / 2 + low;
if (numbers[mid] == target - numbers[i]) {
return new int[]{i + 1, mid + 1};
} else if (numbers[mid] > target - numbers[i]) {
high = mid - 1;
} else {
low = mid + 1;
}
}
}
return new int[]{-1, -1};
}
}


  • 思路
    在数组中找到两个数,使得它们的和等于目标值,可以首先固定第一个数,然后寻找第二个数,第二个数等于目标值减去第一个数的差。利用数组的有序性质,可以通过二分查找的方法寻找第二个数。为了避免重复寻找,在寻找第二个数时,只在第一个数的右侧寻找。

  • 时间复杂度
    O(nlogn),其中 n 是数组的长度。需要遍历数组一次确定第一个数,时间复杂度是 O(n),寻找第二个数使用二分查找,时间复杂度是 O(logn),因此总时间复杂度是 O(nlogn)。

  • 空间复杂度
    O(1)

双指针

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

class Solution {
public int[] twoSum(int[] numbers, int target) {
int low = 0, high = numbers.length - 1;
while (low < high) {
int sum = numbers[low] + numbers[high];
if (sum == target) {
return new int[]{low + 1, high + 1};
} else if (sum < target) {
++low;
} else {
--high;
}
}
return new int[]{-1, -1};
}
}



  • 思路
    初始时两个指针分别指向第一个元素位置和最后一个元素的位置。每次计算两个指针指向的两个元素之和,并和目标值比较。如果两个元素之和等于目标值,则发现了唯一解。如果两个元素之和小于目标值,则将左侧指针右移一位。如果两个元素之和大于目标值,则将右侧指针左移一位。移动指针之后,重复上述操作,直到找到答案。
    使用双指针的实质是缩小查找范围。那么会不会把可能的解过滤掉?答案是不会。假设 numbers[i]+numbers[j]=target 是唯一解,其中 0≤i<j≤numbers.length−1。初始时两个指针分别指向下标 0 和下标 numbers.length−1,左指针指向的下标小于或等于 i,右指针指向的下标大于或等于 j。除非初始时左指针和右指针已经位于下标 i 和 j,否则一定是左指针先到达下标 i 的位置或者右指针先到达下标 j 的位置。
    如果左指针先到达下标 i 的位置,此时右指针还在下标 j 的右侧,sum>target,因此一定是右指针左移,左指针不可能移到 i 的右侧。
    如果右指针先到达下标 j 的位置,此时左指针还在下标 i 的左侧,sum<target,因此一定是左指针右移,右指针不可能移到 j 的左侧。
    由此可见,在整个移动过程中,左指针不可能移到 i 的右侧,右指针不可能移到 j 的左侧,因此不会把可能的解过滤掉。由于题目确保有唯一的答案,因此使用双指针一定可以找到答案。

  • 时间复杂度
    O(n),其中 n 是数组的长度。两个指针移动的总次数最多为 n 次。

  • 空间复杂度
    O(1)